An evolutionary computational approach for formulation of compression index of fine-grained soils
نویسندگان
چکیده
This study presents a robust evolutionary computational technique, called multi-expression programming (MEP), to derive a highly nonlinear model for the prediction of compression index of fine-grained soils. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. The experimental database used for developing the models was established upon 108 consolidation tests conducted on different soils sampled from different construction sites in Iran. The generalization capability of the model was verified via several statistical criteria. The parametric and sensitivity analyses were performed and discussed. The results indicate that the MEP approach accurately characterizes the soil compression index leading to a very good prediction performance. The correlation coefficients between the experimental and predicted soil compression index values are equal to 0.935 and 0.901 for the calibration and testing data sets, respectively. The developed model has a significantly better performance than the existing empirical equations for the soil compression index. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Investigating the Effect of Sedimentary Basin on Consolidation of Kerman Fine-Grained Soils
In this research, the effects of a sedimentary basin, environmental conditions, and the passage of time were investigated on consolidation processes and engineering characteristics of fine-grained soils in Kerman city. For this purpose, the natural consolidation curves of soil samples extracted from different locations of Kerman city were compared with the Kerman city intrinsic consolidation li...
متن کاملSoil Compression Index Prediction Model for Fine Grained Soils
Compressibility of a soil mass is its susceptibility to decrease in volume under pressure and is indicated by soil characteristics like coefficient of compressibility, compression index and coefficient of consolidation. However, the determination of soil compressibility characteristics in the labs is a cumbersome and time consuming process, especially in the case of fine grained soils. In the p...
متن کاملThe Effect of Geopolymerization on the Unconfined Compressive Strength of Stabilized Fine-grained Soils
This study focuses on evaluating the unconfined compressive strength (UCS) of improved fine-grained soils. A large database of unconfined compressive strength of clayey soil specimens stabilized with fly ash and blast furnace slag based geopolymer were collected and analyzed. Subsequently, using adaptive neuro fuzzy inference system (ANFIS), a model has been developed to assess the UCS of stabi...
متن کاملاثر رسهای فیبری و املاح بر سرشتیهای مهندسی خاکهای نواحی خشک
In Iran, a large extent of the soils and water are facing with salinity; so the geotechnical properties of arid and saline soils are important for engineering design. In this study, the effects of salinity on geotechnical properties of fine-grained and coarse-grained soils containing fibrous clay minerals have been studied. The results showed that salinity was mostly a flocculated agent in fine...
متن کاملImpact of gasoline contamination on mechanical behavior of sandy clay soil
Oil leakage causes soil contamination and induces changes in the physical and mechanical properties of soils. In areas contaminated with oil products such as gasoline, the implementation of civilian operations requires determination and prediction of soil behavior in the existing conditions. In this research work, the effect of oil contamination by gasoline obtained from the National Oil Compan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 33 شماره
صفحات -
تاریخ انتشار 2014